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As measured by Gini coefficients, fractile inequalities, and tail
power laws, wealth is distributed less equally across people than
are labor earnings. We study how luck, attitudes that shape sav-
ing decisions, and growth rates of labor earnings balance each
other in ways that simultaneously shape joint distributions across
people of labor earnings, age, and wealth together with an equi-
librium rate of return on savings that plays a pivotal role in
balancing contending forces. Strong motives for people to save
and for firms to demand capital raise an equilibrium interest rate
enough to make wealth grow faster than labor earnings. That
makes cross-sectional wealth more unevenly distributed and have
a fatter tail than labor earnings, as in US data.

inequality | power law | heavy tail

Forces and Main Results
We begin with a streamlined setting, in which an equilibrium
interest rate and distribution of wealth depend on preferences
and opportunities in a continuous-time economy populated by
a unit measure of ex ante identical, but ex post heterogeneous,
agents who have random life spans. After isolating forces that
generate wealth inequality, we investigate how adding sources
of ex ante heterogeneity alters equilibrium wealth distributions.∗

Our model makes cross-sectional wealth more unequal and
fatter-tailed than labor earnings, as is true in US data.

Choices. A person is born at age 0 and dies at a random nonneg-
ative age τ that is exponentially distributed with a constant death
rate λ per unit of time, as in ref. 5. An agent ranks consumption
processes {Ct}∞t=0 by

E
[∫ τ

0

e−ρt U (Ct) dt

]
, [1]

where ρ> 0 is a discount rate, E[ · ] is a mathematical expectation
with respect to the probability distribution of τ , and

U (C ) =

{
C1−γ

1−γ if γ≥ 0, γ 6=1

ln(C ) if γ= 1 .

Each person inelastically supplies H > 0 hours of labor. People
of the same age are equally productive. Labor earnings at age
t equal Yt =Y0 e

gt for 0≤ t <τ , where g > 0. Earnings growth
reflects increased labor efficiency from experience. Let X denote
an agent’s wealth process. All agents start life with X0 = 0 and
identical labor earnings Y0. This is the sense in which they are ex
ante identical.

As in refs. 5 and 6, we assume that people can purchase an
actuarially fair “reverse-life-insurance” contract that provides
payments at rate of λXt until death in exchange for agreeing to
transfer end-of-life wealth Xτ− to an insurance company.

A random variable St = 0 if an agent is alive, and St = 1
otherwise. For (0≤ t <τ ), wealth evolves as

dXt = [(r +λ)Xt−+Yt−−Ct−]dt −Xt−dSt . [2]

The term in brackets is the saving rate Ẋt . The rate of return
on savings equals the sum of the actuarially fair payment rate λ
and the risk-free rate r . The term that multiplies dSt is a transfer
of the agent’s wealth Xτ− just prior to death to the insurance
company at death moment τ , i.e., when dSt = 1.

A person can dissave when savings Xt are positive, but cannot
borrow against future labor earnings, i.e.,

Xt ≥ 0, for all t ≥ 0 . [3]

Each person maximizes utility functional Eq. 1 subject to the law
of motion [2] and an associated transversality condition.

We complete our model as did ref. 1 by letting a represen-
tative firm operate a Cobb–Douglas production technology. A
representative firm operates a production function F (K ,L) =
AKαL1−α, where A> 0, α∈ (0, 1), K is the aggregate capital
stock, and L is aggregate labor demand. Physical capital depre-
ciates at a constant rate δ > 0. The firm rents capital and labor
in competitive markets. The firm’s optimization problem implies
that a competitive equilibrium interest rate r and wage index w
satisfy:

r =FK (K ,L)− δ and w =FL(K ,L) . [4]

Equilibrium. Across people, random deaths are statistically inde-
pendent. To sustain a constant population, we replenish the
economy with new people born at a constant rate λ per unit of
time. By a law of large numbers, the insurance company always
breaks even by using its receipts to cover its payments to living
annuity owners. In equilibrium, capital demand equals capital
supply:

K =E(X )≡
∫ ∞
0

XφX (X )dX , [5]
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distributed and have a fatter tail than labor earnings, as in US
data.

Author contributions: T.J.S., N.W., and J.Y. designed research; T.J.S., N.W., and J.Y. per-
formed research; T.J.S. and N.W. analyzed data; and T.J.S., N.W., and J.Y. wrote the
paper.y

Reviewers: M.D.N., University of Minnesota; X.G., Harvard University; and B.M., London
School of Economics and Political Science.y

The authors declare no competing interest.y

This open access article is distributed under Creative Commons Attribution-NonCommercial-
NoDerivatives License 4.0 (CC BY-NC-ND).y
1 T.J.S., N.W., and J.Y. contributed equally to this work.y
2 To whom correspondence may be addressed. Email: thomas.sargent@nyu.edu.y

Published April 7, 2021.

*Except that we formulate things in continuous, rather than discrete, time to streamline
the mathematics, our model is in an applied tradition initiated by refs. 1 and 2, which
built on theoretical work of refs. 3 and 4.

PNAS 2021 Vol. 118 No. 15 e2025368118 https://doi.org/10.1073/pnas.2025368118 | 1 of 9

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
27

, 2
02

1 

http://orcid.org/0000-0001-7895-6502
http://orcid.org/0000-0001-9067-4970
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:thomas.sargent@nyu.edu
https://doi.org/10.1073/pnas.2025368118
https://doi.org/10.1073/pnas.2025368118
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2025368118&domain=pdf


www.manaraa.com

where φX (X ) is the cross-section stationary probability density
of wealth X .

In equilibrium, labor demand equals labor supply: L=H . The
wage index w equals an average wage rate across all agents
so that w =E(Y )/H . Because aggregate labor cost wL equals
aggregate labor earnings, a law of large numbers† implies

wL=wH =E(Y )≡
∫ ∞
0

Y φY (Y )dY , [6]

where φY (Y ) is the cross-section stationary distribution of labor
earnings. Therefore, an agent’s labor earnings Yt exceeds the
average level E(Y ) if and only if her wage rate Yt/H at t
exceeds w .

Eqs. 4, 5, and 6 imply that the equilibrium interest rate r and
wage rate w received by an agent with average labor efficiency
satisfy

r =Aα
(
K

L

)α−1

− δ=
α

1−α
E(Y )

E(X )
− δ , [7]

w =A(1−α)

(
K

L

)α
=A(1−α)

(
E(X )

H

)α
. [8]

We calculate a cross-section marginal stationary distribution of
wealth by integrating a cross-section joint distribution of wealth
and earnings. Where C (X ,Y ) is a decision rule for consump-
tion and µX (X ,Y ) = (r +λ)X +Y −C (X ,Y ), the following
Kolmogorov Forward (Fokker–Planck) equation describes the
cross-section joint distribution φXY (X ,Y ):

λφXY (X ,Y ) =−∂(µX (X ,Y )φXY (X ,Y ))

∂X
− ∂(gY φXY (X ,Y ))

∂Y
.

[9]

A stationary recursive competitive equilibrium consists of value
functions, decision rules for consumption, an interest rate r , an
average wage rate w , stationary population demographics, and
a stationary distribution for a cross-section joint distribution for
wealth and earnings (X ,Y ) such that

1. Given r and the labor-earnings process {Ys : s ≥ 0} and X0,
decision rules solve each person’s lifetime savings problem;

2. The interest rate r and wage index w satisfy [7] and [8];
3. Eqs. 5 and 6 hold so that markets for capital and labor clear;
4. The cross-section distribution of wealth and earnings
φXY (X ,Y ) is time-invariant and satisfies Eq. 9.

Computing Equilibria
We provide analytic formulas to isolate forces that determine
equilibrium outcomes.‡ .

To assure existence of equilibrium objects, we assume

λ> g ≥ 0, [10]

so that the death rate λ exceeds the earnings growth rate g that
exceeds zero. To compute a stationary equilibrium, we proceed
as follows. We start from an exogenous cross-section distribu-
tion of labor earnings governed by a power law. Next, for a given
interest rate that is consistent with positive aggregate savings, we
use an optimal decision rule for consumption together with bud-
get constraints to deduce dynamics of each person’s wealth and
an implied cross-section distribution of wealth. Then, we com-

†See ref. 7 for technical conditions under which we can construct the associated
probability and agent measures that allow invoking a law of large numbers.

‡Ref. 8 uses a related model to link technology to the personal income and wealth
distributions in their analysis of the distributional effects of automation.

pute an interest rate that equates aggregate supplies of labor and
capital to aggregate quantities that firms demand.

Cross-Section Earnings Distribution. Labor earnings grow accord-
ing to Yt =Y0 e

gt , and length of life is the only source of
heterogeneity across people. Along with Condition [10], a con-
stant mortality rate λ implies that the cumulative distribution
function (CDF) of the cross-section of earnings is

ΦY (Y ) = 1−
(

Y

Y0

)−ξY
, [11]

where
ξY =λ/g , [12]

with mean

E(Y ) =

∫ ∞
0

YdΦY (Y ) =
λ

λ− g
Y0 . [13]

Evidently, ΦY (Y ) has a fat tail with a power-law exponent
ξY =λ/g > 1. Researchers including refs. 9–15 also combined
exponential growth with a constant exit rate to attain such results.

Eq. 11 implies the following Lorenz curve of labor earnings:

LY (z )≡
∫ z

0
Φ−1

Y (u)du∫ 1

0
Φ−1

Y (u)du
= 1− (1− z )

λ−g
λ . [14]

The fraction of labor earnings earned by the top (10× u) percent
of people that goes to the top u percent is constant:

FIY (u)≡ 1−LY (1− 0.01× u)

1−LY (1− 0.1× u)
= 10

g
λ
−1> 0.1 . [15]

Condition [10] (λ> g) implies FIY (u)> 0.1, which means that
earnings have a fat right tail with a constant FI for all admissible
levels of u .

By using Eq. 14, we obtain the following formula for the Gini
coefficient of labor earnings:

ΓY ≡ 2

∫ 1

0

(z −LY (z ))dz =
g

2λ− g
. [16]

Inequalities [10] imply 0≤ΓY < 1/2. The higher the earnings
growth g , the larger the earnings inequality. For the special case
with no growth (g = 0), ΓY = 0.

Optimal Consumption. A scalar

q =
1

r +λ− g
, [17]

converts a unit of labor-earnings Yt into human wealth qYt in
the sense of ref. 16. Thus,

Pt =Xt + qYt , [18]

becomes the sum of financial and human wealth. Total wealth
{Pt ; t ≥ 0} serves as s single state variable that determines a
person’s lifetime utility when Xt > 0 at all t > 0 before death.§

Because the market structure allows people to hedge mortality
risk, the optimal consumption rule is linear in total wealth Pt :

Ct =mPt =m (Xt + qYt), [19]

§We shall verify that in equilibrium, Xt > 0 at all ages.
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where m is the marginal propensity to consume (MPC):

m = ρ+λ+ (1− γ−1) (r − ρ) . [20]

Consumption Ct and total wealth Pt both grow exponentially at
a rate

(
r−ρ
γ

)
that equals the product of wedge (r − ρ) and the

elasticity of intertemporal substitution 1/γ:

dCt

Ct
=

dPt

Pt
=

(
r − ρ
γ

)
dt . [21]

Therefore, Pt =Xt + qYt =P0 e
(r−ρ)t/γ and Ct =

mP0 e
(r−ρ)t/γ . Below, we call decision rule [19] a Ramsey

rule.

Wealth as a Function of Earnings. A person’s age t is tied to her
earnings by t = ln(Yt/Y0)

g
, and wealth Xt at age t satisfies

Xt =X (Yt) = qY0

[(
Yt

Y0

)r−ρ
γg

− Yt

Y0

]
. [22]

Because Xt is positive at all t , we know that X (Y ) is increasing
in Y . For X (Y )> 0 and X ′(Y )> 0 on (0, +∞), it is necessary
that r−ρ

γ
> g , i.e.,

r >ρ+ γg ≡ rramsey . [23]

So an equilibrium interest rate r has to exceed ρ, an agent’s dis-
count rate.¶ That condition is violated by the r <ρ equilibrium
outcome in refs. 1, 2, and 4 models with infinitely lived agents.
Indeed, [23] asserts something even stronger, namely, that the
interest rate r must exceed rramsey, the augmented golden rule
interest rate for a Ramsey nonstochastic optimal growth model.

Inequality [23] also implies that the growth rate of con-
sumption exceeds the growth rate of earnings, a consequence
of a constant MPC out of total wealth and the existence
of stationary equilibrium. Since inequality [23] holds, Eq.
22 implies that wealth is a convex function of earnings.
That shape amplifies wealth inequality relative to earnings
inequality.

Cross-section wealth is less equally distributed and has a
fatter tail than nonfinancial earnings because individuals’ opti-
mal saving choices make their financial wealth always grow
at a faster rate than nonfinancial earnings. Younger people
own less financial wealth, so they choose to make their wealth
grow at faster rates than do older people. Growth rates of
wealth still exceed growth rates of nonfinancial earnings for
very old people. The higher growth rate of total wealth than
of nonfinancial earnings combines with compound interest to
widen the wealth distribution and fatten its right tail relative to
earnings.

Cross-Section Wealth Distribution. The inverse function X (Y )
presented in Eq. 22 is increasing in Y under Condition [23].
In a stationary equilibrium, those who live longer have higher
earnings and more wealth. Indeed, the CDF of wealth, which we
denote by ΦX (X ), satisfies ΦX (Xt) = ΦY (Yt), which implies

ΦX (X ) = 1−
(
Y (X )

Y0

)−λ
g

. [24]

Therefore, the mean of cross-section wealth, X , is

¶Because mortality risk is fully hedged via an actuarially fair reverse annuity, it is not the
source of r>ρ.

E(X ) =
λ(r − ρ− γg)

(λγ− (r − ρ))(λ− g)

1

r +λ− g
Y0 . [25]

The cross-section distribution of wealth X is asymptotically fat-
tailed with a power-law exponent

ξX =
γλ

r − ρ . [26]

This follows from

lim
X→∞

1−ΦX (X )(
X

qY0

)−ξX = lim
Y→∞

(
Y
Y0

)−λ
g(

X (Y )
qY0

)−ξX
= lim

Y→∞

(
Y
Y0

)−λ
g

(
Y
Y0

)−ξX · r−ρ
γg

= lim
Y→∞

(
Y
Y0

)−λ
g

(
Y
Y0

)−λ
g

= 1 , [27]

where the first equality uses [24], the second equality uses [22]
and inequality [23], and the third equality follows from [26].
Researchers, including refs. 8–11, 13, and 14, have obtained
similar results.

Unlike the cross-section earnings distribution that satisfies a
power law over the entire support of Y , the cross-section wealth
distribution satisfies a power law only in the limit as X →∞.
Thus, the fraction of wealth owned by the top 10× u percent that
goes to the top u percent of people, which we denote by FIX (u),
obeys

lim
u→0

FIX (u)≡ 1−LX (1− 0.01× u)

1−LX (1− 0.1× u)
= 10(1/ξX )−1 , [28]

where ξX is given in Eq. 26.‖ .

From Micro to Macro. Inequality [23] and Eq. 26 together
imply that ξX <λ/g : Cross-section wealth has a fatter right
tail than earnings since the power-law exponent ξX of cross-
section wealth is smaller than the exponent λ/g of cross-section
earnings.

In Appendix, we derive the following formula for the Lorenz
curve of wealth:

LX (z )≡
∫ z

0
Φ−1

X (u)du∫ 1

0
Φ−1

X (u)du

=
γ(λ− g)

r − (ρ+ γg)

(
1− (1− z )

(ρ+γλ)−r
λγ

)
− (ρ+ γλ)− r

r − (ρ+ γg)

(
1− (1− z )

λ−g
λ

)
, [29]

and the following formula for the Gini coefficient of wealth:

ΓX = 2

∫ 1

0

(z −LX (z ))dz =
2γλ2 + g(ρ− r)

(ρ− r + 2γλ)(2λ− g)
. [30]

Our Condition [10] asserts that λ> g implies that the Gini
coefficient for wealth is larger than for earnings: ΓX >ΓY .

Fig. 1 illustrates the mechanism that generates a fatter-tailed
distribution for cross-section wealth than for earnings. Fig. 1 A
and B show that earnings Y grow at a constant rate g that is
lower than the consumption growth rate (r − ρ)/γ. This occurs
because X grows at a nonlinear rate greater than consumption

‖Ref. 8 obtains the same power-law exponent in a model of how automation affects
earnings and wealth inequality.
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Fig. 1. Earnings, wealth, and consumption: micro dynamics and macro
cross-section distribution. A plots the levels of Yt , Xt , and Ct . B plots the
corresponding growth rate of change over time: Ẋt/Xt , Ẏt/Yt , and Ċt/Ct . C
plots the CDFs of Y , X, and C. D plots the equilibrium stationary cross-section
Lorenz curves for Y , X, and C. Parameter values are γ= 2, ρ= 5%, α= 0.36,
δ= 6%, A= 0.896, λ= 0.0167, g = 1.1%, and σ= 0.

and earnings growth rates. While the growth rate of wealth
Ẋt/Xt decreases with age after starting from ∞ at X0 = 0, Ẋt

increases with age.
Fig. 1C plots cross-section distributions of Y , X , and C . Fig.

1D plots corresponding Lorenz curves. CDFs for both earnings
and consumption are described globally by power laws having
different exponents. Because our agents prefer to smooth con-
sumption over time, it may at first appear surprising that the
distribution of consumption is fatter-tailed than the distribu-
tion of earnings. But Condition [23] reveals that, in equilibrium,
consumption grows faster than earnings. The distribution of
wealth is not globally Pareto as earnings and consumption are,
but instead approaches the shape of a Pareto distribution with
the same power-law exponent as consumption as X →∞. Fig.
1D shows that wealth has a substantially steeper/convex Lorenz
curve than consumption, which, in turn, has a steeper/convex
Lorenz curve than earnings Y does. Consequently, the Gini coef-
ficient for X is larger than it is for consumption C , which is larger
than it is for labor earnings Y .

Note that the Gini coefficient, Lorenz curve, and tail fatness all
provide the same inequality rankings for cross-section consump-
tion, labor earnings, and wealth. Such identical rankings won’t
prevail after we add ex ante heterogeneity across agents.

Aggregate Earnings, Wealth, and Interest Rate. In a stationary equi-
librium, dKt = dE(Xt) = 0. Summing over the wealth dynamics
given in Eq. 2 across all agents and using a law of large numbers,
we obtain the following relation for aggregate variables:

E(C ) = rE(X ) +E(Y ) . [31]

rE(X ) is an annuity payment on aggregate wealth, and E(Y )
is aggregate labor earnings. Note that the life-insurance com-
pany’s transfers to the living equal its receipts from the dying
and, hence, do not appear in Eq. 31.

We have National Income and Product Accounts typical of
models in the ref. 1–4 tradition:

F (K ,L) =FK (K ,L)K +FL(K ,L)L= (r + δ)K +wL

= (r + δ)E(X ) +E(Y ) =E(C ) + δK . [32]

The first equality follows from Euler’s theorem applied to a
Cobb–Douglas aggregate production function; the second equal-
ity uses the firm’s first-order conditions for factors of production:
FK (K ,L) = (r + δ) and FL(K ,L) =w ; the third equality follows
from market-clearing conditions K =E(Xt) and wL=wH =
E(Yt); and the fourth equality follows from [31].

To compute a stationary equilibrium interest rate, take
the firm’s first-order conditions for capital and labor, r + δ=
FK (K ,L) and w =FL(K ,L), and then substitute [13] and [25]
for E(Y ) and E(X ), respectively, to obtain

r =
α

1−α
wL

K
− δ

=
α

1−α
E(Y )

E(X )
− δ=

α

1−α
(ρ+λγ− r)(r +λ− g)

r − (ρ+ γg)
− δ .

[33]

A version of the preceding equation appears also as Eq. 5 and in
appendix B.1.1 of ref. 8.

This string of equalities implies a quadratic equation that
restricts the stationary equilibrium r :

Ψ(r)≡ r2− [ρ+ (1−α)(γg − δ) +α(γλ− (λ− g))]r

− [(1−α)δ(ρ+ γg) +α(λ− g)(ρ+ γλ)]= 0 . [34]

The equilibrium interest rate is the positive root of Eq. 34.∗∗

Evidently,

Ψ(0) =−((1−α)δ(ρ+ γg) +α(λ− g)(ρ+ γλ))< 0 ,
[35]

Ψ(ρ) =−(1−α)(ρ+ δ)γg −αγλ(ρ+λ− g)< 0 , [36]
Ψ(ρ+ γg) =−(λ− g)αγ(ρ+ γg +λ− g)< 0 , [37]
Ψ(ρ+ γλ) = (λ− g)(1−α)γ(ρ+ γλ+ δ)> 0 . [38]

Fig. 2 reveals that the equilibrium interest rate satisfies:

ρ≤ ρ+ γg < r <ρ+ γλ. [39]

Quantitative Inputs and Outputs
Parameter Choices. To isolate sources of new findings about the
equilibrium wealth distribution that our model brings, we pur-
posefully choose consensus parameter values from the literature.
Thus, we set commonly used values γ= 2 and an annual discount
rate ρ= 5%. We set preference and production function param-
eters to values used by refs. 17–19. Following refs. 20 and 21,
we set the capital share of national income, α, to 0.36. We set an
annual depreciation rate of capital, δ, to 6% to match an estimate
of the US depreciation-output ratio reported by ref. 22. We want
an aggregate capital-output ratio equal to three, as in refs. 18 and
23, which, in light of Eq. 7, leads to an equilibrium interest rate
r of 6% per annum, as in refs. 17 and 18. Along with refs. 8 and
18 and others, we interpret the equilibrium risk-free rate in our
model as a broad measure of average returns on capital. This is
why we calibrate an annual (real) risk-free rate to be approxi-
mately 6%. We set the productivity parameter A to 0.9, so that
the wage rate w for an agent with the average labor efficiency
equals unity (a normalization). We set λ= 0.0167 in order to set
an agent’s expected lifetime at 1/λ= 60 years, as in ref. 23.

**Eq. 21 implies that a negative r together with X0 = 0 (and, hence, P0 = Y0) would not
cohere with the requirement that E(X) = K> 0.

4 of 9 | PNAS
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Fig. 2. The quadratic function Ψ(r) given in Eq. 34. The equilibrium inter-
est rate satisfies Ψ(r∗) = 0 and (ρ+ γg)< r∗< (ρ+ γλ) when λ> g≥ 0, as
assumed in Condition [10].

Role of Earnings Growth g. In Table 1, we conduct a comparative
static exercise with respect to the earnings growth rate g . In addi-
tion to the equilibrium interest rate r , we report Gini coefficients
for earnings and wealth (ΓY and ΓX ), power-law exponents (ξY
and ξX ) for the tail, and fractal inequalities (FIY and FIX ) for
the tail.

First, consider a case with g = 0. There is zero cross-section
earnings inequality (hence, ΓY = 0, ξY =∞, and FIY = 0.1). An
equilibrium interest rate r = 5.88% that exceeds the annual rate
of time preference ρ= 5% makes young people want to save. Our
analytical formulas indicate that wealth has a power-law expo-
nent of ξX = γλ/(r − ρ) = 2× (1/60)/(0.0588− 0.05) = 3.79 , a
Gini coefficient of ΓX = 1/(2− ξ−1

X ) = 0.58, and fractal inequal-
ity FIX = 10(1/ξX )−1 = 0.18 for all z . The fraction of wealth
earned by the top 0.1% of people that goes to the top 0.01% is
18%, which, because it is larger than 10%, indicates that wealth
is fat-tailed.

The g = 0 (first) row in Table 1 shows that, in equilibrium, the
pure life-cycle savings motive for young people, all of whom are
born with no (or small) wealth, can generate a fat-tailed wealth
distribution, even when their labor earnings are perfectly equal
and wealth inequality is entirely driven by how long different
agents live.

At a given interest rate r , a higher labor-earnings growth
rate g strengthens incentives to borrow against future income
to finance current consumption. To encourage savings and clear
the asset market, the equilibrium r must increase with g . Also, as
g increases, (aggregate) labor becomes more productive, which
raises firms’ demand for capital because capital and labor are
complements.

Thus, as g increases from 0 to 1%, cross-section earnings
inequality increases because older people have higher earnings:
The Gini coefficient for cross-section earnings increases from
zero to ΓY = 1%/(2× (1/60)− 1%) = 0.43, and the earnings
tail becomes fatter (with the power-law exponent ξY decreasing
from∞ to λ/g = (1/60)/1% = 1.67). As a result, the fraction of
earnings received by the top 0.01% of agents that goes to the
top 0.1% equals 40%: FIY = 101/ξY−1 = 10(1/1.67)−1 = 40%, a

fraction whose excess over 10% indicates substantial earnings
inequality among the earnings-rich.

In order to elicit saving, the equilibrium interest rate increases
from 5.88% to 7.34%. When g = 1%, the return on savings is
greater than when g = 0 because the equilibrium interest rate is
higher. As a result, cross-section wealth inequality increases sub-
stantially. The Gini coefficient for wealth ΓX increases to 0.87
from 0.58; the wealth tail becomes fatter with the power-law
exponent ξX = γλ/(r − ρ) decreasing to 2× (1/60)/(7.5%−
5%) = 1.43 from 3.79; and the fraction of wealth owned by
the top 0.01% of agents owned by the top 0.1% increases to
FIX = 10(1/ξX )−1 = 10(1/1.43)−1 = 50% from 18%.

Finally, if we adjust parameters to make the Gini coeffi-
cient of earnings equal 0.63, the value reported in refs. 18
and 23, we obtain g = 1.29%. In this case, the annual equi-
librium interest rate is 7.77%, and the wealth Gini coefficient
is 0.95, significantly higher than its value of 0.78 in the US
data. What makes cross-section wealth that much fatter-tailed
than earnings is that the equilibrium interest rate is high and
so many agents live so long, or, if we reinterpret the mor-
tality parameter as partly measuring intergenerational bequest
motive, that they care so much about their descendants. Ref.
8 analyzes a setup like this. See their p. 7 discussion on “finite
lives and stochastic altruism” and their online appendix B.1.3.
Enriching the mortality specification would allow us to improve
fits here.†† .

Table 1 confirms two insights about sources of wealth inequal-
ity. First, a higher growth rate of earnings increases Gini coef-
ficients and fattens right tails of both earnings and wealth.
Second, for all levels of g , wealth inequality is larger than
earnings inequality, whether we measure them with Gini coef-
ficients (ΓX >ΓY ), power-law exponents for right tails (ξX <
ξY ), or fractal inequalities (FIX >FIY ). This occurs because
older people are both earnings-rich and wealth-rich; their vol-
untary savings makes their wealth grow at a faster rate than
their earnings.‡‡ However, the result that wealth has a fat-
ter tail than earnings may not hold when there is ex ante
heterogeneity.

Table 1 confirms that the equilibrium interest rate r exceeds
the earnings growth rate g .§§ The mechanism here is related
to, but distinct from, one posited by ref. 27, which sees an
r > g condition as the fulcrum that creates wealth inequality.
Unlike ref. 27, our model with its ex post heterogeneous agents
explicitly incorporates equilibrium consumption responses of the
type analyzed in refs. (1–4). Despite the action of the impa-
tience parameter ρ> 0 in making them prefer to front-load their
consumption profiles, agents accept upward-sloping consump-
tion profiles that fit together with an equilibrium age-dependent
wealth growth rate that is larger than (r − ρ)/γ, which, in turn,
exceeds the earnings growth rate g . These outcomes prevail
because, in equilibrium, an individual’s wealth accumulates at a
rate higher than earnings.

Ex Ante Heterogeneity
Ref. 28 documents that ex ante heterogeneity influences equilib-
rium wealth distributions. Ref. 29 shows how positing different
discount rates across agents can help match equilibrium wealth
distributions. We can extend our baseline model to allow for

††Refs. 24 and 25 construct a stochastic dynastic/life-cycle model that fits observed
demographics reasonably well.

‡‡Ref. 26 documents that capital income is more unequally distributed than labor earn-
ings, that the exponent for capital is between one and three, and that it is smaller
than the exponent for labor, which is between two and five.

§§Along with refs. 8 and 18 and others, we interpret the equilibrium risk-free rate in our
model as a broad measure of average returns on capital. This is why we calibrate an
annual (real) risk-free rate to be approximately 6%.
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Table 1. Effects of earnings growth rate g

g r, % ΓY ΓX ξY ξX FIY FIX

0 5.88 0 0.58 ∞ 3.79 0.10 0.18
0.5% 6.60 0.18 0.72 3.34 2.08 0.20 0.30
1% 7.34 0.43 0.87 1.67 1.43 0.40 0.50
1.29% 7.77 0.63 0.95 1.29 1.21 0.59 0.68

ΓY and ΓX are the Gini coefficients for cross-section earnings and wealth,
respectively. For all levels of Y , the power-law exponent for earnings is ξY =

λ/g, and the power-law exponent for wealth approaches ξX = γλ/(r− ρ)
as X→∞.

this and other varieties of ex ante heterogeneity. Thus, sup-
pose that groups of people, A and B , differ in earnings growth
rates (gA and gB ) , elasticity of intertemporal substitution (1/γA

and 1/γB ), subjective discount rates (ρA and ρB ), or death (or
dynasty exit rates) λA and λB . Let θ denote the population
of type-A agents and (1− θ) denote the population of type-B
agents. Assume λA> gA≥ 0 and λB > gB ≥ 0, so that stationary
earnings distributions exist for both groups.

Cross-Section Earnings Distribution. The CDF for cross-section
earnings is

ΦY (Y ) = 1− θ
(

Y

Y0

)−λA/gA

− (1− θ)
(

Y

Y0

)−λB/gB

, [40]

and so has a fat tail with a power-law exponent equal to
min{λA/gA,λB/gB}. A higher earnings growth rate g or a lower
death/exit rate λ makes the tail of the distribution fatter. Using
[40], we obtain economy-wide average earnings:

E(Y ) =

∫ ∞
0

YdΦY (Y ) =

(
λAθ

λA− gA
+
λB (1− θ)
λB − gB

)
Y0 . [41]

Cross-Section Wealth Distribution. Let

πN =
gNγN

r − ρN , [42]

where N =A,B and
πA≥πB . [43]

A financially unconstrained type-N agent optimally chooses
a linear Ramsey consumption rule at all t , and her optimal
consumption growth rate equals (r − ρN )/γN . Fraction πN is
defined as the earnings growth rate gN divided by this optimal
consumption growth rate (r − ρN )/γN . But if the no-borrowing
constraint binds Xt ≥ 0, that Ramsey rule cannot be used for
all t . Nevertheless, the definition of πN helps us to character-
ize the cross-section wealth distribution. We provide conditions
under which Ramsey linear consumption rules are optimal for
both groups or only for group B and then characterize associated
cross-section wealth distributions.
Ramsey rules for both groups. Consider the case where

Case1 : 1>πA≥πB . [44]

This condition means that for both groups, Ramsey consumption
rules are feasible and optimal. So each agent saves and sees its
wealth Xt increasing with age t . Therefore, the earnings growth
rate is lower than the consumption growth rate in equilibrium.

The CDF or cross-section wealth for type N =A,B is

ΦN (X ) = 1−
(
Y N (X )

Y0

)−λN

gN

, [45]

where Y N (X ) is the value of Y that solves X =XN (Y ):

XN (Y ) = qY0

[(
Y

Y0

)1/πN

− Y

Y0

]
. [46]

When πN < 1, the power-law exponent for the right tail of wealth
distribution (for type-N agents) equals the product of πN and
λN

gN
, which we denote by ξNX :

ξNX =
γNλN

r − ρN . [47]

As noted in [10], since λN > gN is required to ensure that a sta-
tionary earnings distribution exists, ξNX >πN is satisfied when
πN < 1 because ξNX > 1.

The CDF of the cross-section wealth distribution is

ΦX (X ) = 1− θ
(

1−ΦA(X )
)
− (1− θ)

(
1−ΦB (X )

)
[48]

= 1− θ
(
Y A(X )

Y0

)−λA

gA

− (1− θ)
(
Y B (X )

Y0

)−λB

gB

,

so cross-section wealth is asymptotically fat-tailed with power-
law exponent ξX

ξX = min
{
ξAX , ξBX

}
, [49]

where ξNX is the power-law exponent of the wealth distribution
for N =A,B given in [47]. The wealth-rich who are at the right
tail are long-lived ones from the group and have a lower value of
the power-law exponent ξNX . That is, people who are more patient
(a lower ρ), more willing to substitution consumption over time
(a higher elasticity of intertemporal substitution, 1/γ), and/or
less likely to die (a lower λ) accumulate more wealth and move
into the right tail of the wealth distribution.

Average wealth is

E(X ) =

(
r − ρA− γAgA

)
(λAγA− (r − ρA))(λA− gA)

θλA

r +λA− gA
Y0

+

(
r − ρB − γBgB

)
(λBγB − (r − ρB ))(λB − gB )

(1− θ)λB

r +λB − gB
Y0 .

[50]

The equilibrium interest rate, r , solves

r =
α

1−α
E(Y )

E(X )
− δ , [51]

where E(Y ) is given by [41], and E(X ) is given by [50]. The
equilibrium interest rate satisfies

max
N=A,B

(
ρN + γN gN

)
< r < min

N=A,B

(
ρN + γNλN

)
. [52]

The left inequality in [52] states that the equilibrium interest rate
r exceeds the larger

(
ρN + γN gN

)
to ensure that savings motives

are sufficiently strong for both groups so that they want to use
Ramsey rules. An implication of this result is that the equilibrium
interest rate r >max{ρA, ρB}, in contrast to outcomes in refs. 1,
2, and 4 models with infinitely lived agents. The right inequality
in [52] states that the equilibrium interest rate cannot be so high
that it causes consumption for either group to grow at a rate (r −
ρN )/γN larger than the death/exit rate λN . Otherwise, there is no
stationary wealth distribution.
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Table 2. Effects of ρA: πA < 1

ρA r, % ΓY ΓX ξY ξX FIY FIX

5% 7.50 0.50 0.90 1.51 1.34 0.46 0.56
5.2% 7.59 0.50 0.91 1.51 1.29 0.46 0.60
5.4% 7.65 0.50 0.97 1.51 1.26 0.46 0.62

ΓY and ΓX are the Gini coefficient, ξY and ξX are the power-law exponents
of the right tail, and FIY and FIX are the fractal inequality of the right tail
for cross-section earnings and wealth, respectively. We set θ= 0.5, gA = gB =

1.11%, λA =λB = 0.0167, ρB = 0.05, γA = γB = 2, δ= 0.06, and α= 0.36.

Group A as hand-to-mouth consumers. Next, we turn to a
situation in which one group of agents is financially constrained:

Case2 :πA≥ 1>πB . [53]

Now, agents in group A with their high earnings growth g , high
discount rate ρ, or low elasticity 1/γ want to front-load con-
sumption enough to cause Xt ≥ 0 to bind, i.e., Xt = 0 at all t .
That makes them into hand-to-mouth consumers forever.¶¶ In
equilibrium, agents in the other group cannot be hand-to-mouth
consumers, and we must have πB < 1. Otherwise, there would
be insufficient savings to support aggregate production, driving
the marginal product of capital to plus infinity. The equilibrium
interest rate has to be at a level where πB < 1, meaning that
agents in group B are financially unconstrained with optimal
consumption functions that take the form of Ramsey rules.

Recall that X = 0 for all agents in group A and that their mass
is θ. People in group B all have positive savings. Therefore, the
CDF for the wealth distribution has positive probability mass at
X = 0: ΦX (0) = θ and

ΦX (X ) = 1− (1− θ)
(
Y B (X )

Y0

)−λB

gB

for X > 0 . [54]

In [54], Y B (X ) is the value of Y that solves X =XB (Y ), where
XB (Y ) is given by [46] with parameter values for N =B . Eqs. 54
and 46 imply that the power-law exponent of wealth is ξBX , where
ξBX is given by [47] with N =B .

Equilibrium average wealth is

E(X ) =

(
r − ρB − γBgB

)
(λBγB − (r − ρB ))(λB − gB )

(1− θ)λB

r +λB − gB
Y0 . [55]

The equilibrium interest rate, r , solves [51], where E(X ) is given
in [55] and E(Y ) is given in [41].

The equilibrium interest rate satisfies the following restriction:

ρB ≤ ρB + γBgB < r <ρB + γBλB . [56]

As group A agents are hand-to-mouth, only parameter values for
group B appear in [56]. As in our baseline model with no ex
ante heterogeneity, the equilibrium interest rate r exceeds the
subjective discount rate for the financially unconstrained type-B
agents (ρB ) by γBgB , but the equilibrium consumption growth
rate (r − ρB )/γB cannot exceed death rate λB , as required by
the inequality on the right side of [56]. Otherwise, there is no
stationary wealth distribution.

Consequences of Heterogeneous Discount Rates and Earnings Growth
Rates. In Tables 2 and 3, we display consequences of varying ρA.
We hold all other parameters at the same values for the two

¶¶Refs. 30 and 31 refer to consumers who equal consumption to earnings with no savings
as hand-to-mouth consumers and document that they constitute a sizable proportion
of consumers.

groups: λA =λB = 0.0167, gA = gB = 1.11%, and γA = γB = 2.
When the subjective discount rate ρA is just slightly larger than
ρB = 5%, which means πA< 1 holds (case 1), the equilibrium
consumption rules for both groups are linear in wealth and
earnings. We report these results in Table 2. The first row corre-
sponds to the baseline case with no heterogeneity as ρA = ρB =
5%. Therefore, r = 7.5%, and we reproduce results from Table
1. By increasing ρA (e.g., to 5.4%) and keeping ρB = 5%, type-A
agents increase their consumption, and firms would want more
capital if r were fixed at 7.5%, so the equilibrium interest rate has
to increase (to 7.65%). As a result, a higher interest rate helps
savers accumulate wealth, and, hence, wealth inequality widens,
as indicated by a higher Gini coefficient ΓX , a lower power-law
exponent ξNX , and a higher fractional inequality FIX .

As we continue to increase ρA to 5.45% (the first row in Table
3), consumption for group A continues to increase up to the
point where πA = 1, which implies XA

t = 0 for all agents in group
A at t ≥ 0. As a result, for markets to clear, the interest rate
again continues to increase. Using [42], we confirm this intu-
ition: the equilibrium interest rate: r = ρA + gAγA = 5.45% +
1.11%× 2 = 7.67%. Because the interest rate increased only 2
basis points as we increase ρA from 5.4% to 5.45%, wealth
inequality increases only slightly. Finally, further increasing ρA

does not change equilibrium outcomes because type-A agents
are constrained. This is why the two rows in Table 3 are the same.

Outcomes displayed in Tables 2 and 3 corroborate results of
ref. 29, which uses heterogeneous discount rates to generate an
empirically plausible wealth distribution.

Tables 4 and 5 reports equilibrium consequences of varying
gA. We keep other parameters identical for the two groups:
λA =λB = 0.0167, ρA = ρB = 0.05, and γA = γB = 2. When the
earnings growth rate gA is not too high so that πA< 1 holds (case
1), equilibrium consumption rules for agents in both groups are
linear in wealth and earnings. We report these results in Table
4. The first row corresponds to the baseline case with no hetero-
geneity as gA = gB = 1.11% and, thus, r = 7.5%, and we recover
results reported in Table 1. By increasing gA (e.g., to 1.3%) and
keeping gB = 1.11%, type-A agents increase their consumption,
and firms would demand more capital (if r were fixed at 7.5%),
so the equilibrium interest rate has to increase (to 7.67%). As
a result, savers accumulate wealth at a higher interest rate, and
wealth inequality widens, as witnessed by a higher Gini coeffi-
cient ΓX , a lower power-law exponent ξNX , and a higher fractional
inequality FIX

As we increase gA to 1.39% (the first row in Table 5), con-
sumption for group A increases up to where πA = 1, which
implies XA

t = 0 for all agents in group A at t ≥ 0. As a result, for
markets to clear, the interest rate again has to increase. Using
[42], we confirm this reasoning: the equilibrium interest rate:
r = ρA + gAγA = 5% + 1.39%× 2 = 7.78%. Earnings inequality
and wealth inequality both also increase.

As we further increase gA from 1.39 to 1.6%, consumption for
agents in group A no longer responds, as they are involuntarily
constrained to be hand-to-mouth consumers for any gA satisfying

Table 3. Effects of ρA: πA ≥ 1

ρA r, % ΓY ΓX ξY ξX FIY FIX

5.45% 7.67 0.50 0.97 1.51 1.25 0.46 0.63
6% 7.67 0.50 0.97 1.51 1.25 0.46 0.63

ΓY and ΓX are the Gini coefficient, ξY and ξX are the power-law expo-
nents of the right tail, and FIY and FIX are the fractal inequality of the
right tail for cross-section earnings and wealth, respectively. We set θ= 0.5,
gA = gB = 1.11%, λA =λB = 0.0167, ρB = 0.05, γA = γB = 2, δ= 0.06, and
α= 0.36.
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1.39%≤ gA≤λA. As labor becomes more productive (higher
gA), the firm’s demand for capital continues to increase (as capital
and labor are complements). In equilibrium, the interest rate rises
to 8.06% to restore equilibrium for the case where gA = 1.6%.

A faster earnings growth rate increases both earnings inequal-
ity and the equilibrium interest rate r . Therefore, wealth inequal-
ity increases because savers accumulate wealth at a faster rate via
a higher r . Thus, faster earnings growth generates larger earnings
inequality and also larger wealth inequality. These outcomes are
consistent with our baseline analysis with ex ante identical agents.

While inequality measures for earnings and wealth both
increase with gA, whether wealth inequality is greater than earn-
ings inequality for a given gA depends on how we measure
inequality. When πA> 1 in equilibrium, the Gini coefficient (i.e.,
two times the area between the 45◦ line and the Lorenz curve)
and measures of tail fatness (e.g., the power-law exponent and
the fractal inequality, FI) yield opposite answers.

Table 5 shows that the earnings distribution has a fatter right
tail than does the wealth distribution when πA> 1 in equilib-
rium. For example, when gA = 1.6%, the power-law exponent
for earnings is 1.04, which is lower than the power-law expo-
nent for wealth, 1.09. The fraction of wealth owned by the top
10× u percent owned by the top u percent of people as u
goes to zero, limu→0 FIX (u), approaches 82%, which is already
very large. However, this fractal inequality measure for earnings
yields an even worse earnings inequality, FIY = 91%, meaning
that the fraction of earnings earned by the top 10× u percent
that goes to the top u percent of people as u goes to zero,
limu→0 FIX (u) = 0.91, which is larger than that measure for the
wealth distribution.

Nevertheless, the Gini coefficient for earnings is much smaller
than the Gini coefficient for wealth: ΓY = 0.68 versus ΓX = 0.98
for the case where gA = 1.6%. This is because group A agents are
at the bottom of the wealth distribution, with zero wealth, which
substantially increases the Gini coefficient for wealth, while their
being at the left tail evidently has no effect on the right tail of the
wealth distribution. Indeed, the wealth-rich are people who have
lower earnings growth, but who have lived long.

In Fig. 3, we plot the Lorenz curves for earnings and wealth in
A and B, respectively. We see that as we increase gA, Lorenz
curves for both earnings and wealth become steeper, and the
Gini coefficient also increases.

Concluding Remarks
Our paper shares topics, but not models, methods, or findings,
with ref. 27. Ref. 27 bristles with fascinating claims about sources
of wealth inequalities and presents them to a broad audience by
deploying what ref. 32 called “implicit theorizing” that can leave
a technically inclined reader not knowing assumptions that make
things fit together. Parts of his argument that lead him to empha-
size an “r > g” condition as a cause of cross-section dispersion in
wealth rest on an appeal to a single-agent growth model that has
no wealth or income inequality.

Our model tightly links outcomes for individuals to macroeco-
nomic outcomes that include the celebrated “r and g” variables

Table 4. Effects of gA: πA < 1

gA r, % ΓY ΓX ξY ξX FIY FIX

1.11% 7.50 0.50 0.90 1.51 1.34 0.46 0.56
1.2% 7.57 0.53 0.91 1.39 1.30 0.52 0.59
1.3% 7.67 0.56 0.94 1.28 1.25 0.60 0.63

ΓY and ΓX are the Gini coefficients, ξY and ξX are the power-law expo-
nents of the right tail, and FIY and FIX are the fractal inequality of the
right tail for cross-section distribution for earnings and wealth, respectively.
We set θ= 0.5, gB = 1.11%, λA =λB = 0.0167, ρA = ρB = 0.05, γA = γB = 2,
δ= 0.06, and α= 0.36.

Table 5. Effects of gA: πA ≥ 1

gA r, % ΓY ΓX ξY ξX FIY FIX

1.39% 7.78 0.60 0.97 1.20 1.20 0.68 0.68
1.5% 7.88 0.64 0.97 1.11 1.16 0.79 0.73
1.6% 8.06 0.68 0.98 1.04 1.09 0.91 0.82

ΓY and ΓX are the Gini coefficients, ξY and ξX are the power-law expo-
nents of the right tail, and FIY and FIX are the fractal inequality of the
right tail for cross-section distribution for earnings and wealth, respectively.
We set θ= 0.5, gB = 1.11%, λA =λB = 0.0167, ρA = ρB = 0.05, γA = γB = 2,
δ= 0.06, and α= 0.36.

that concerned ref. 27. A wedge between an equilibrium growth
rate for wealth/savings, gX

t ≡ Ẋt/Xt and an earnings growth rate
g at the level of individual people (not at the aggregate level)
makes cross-section wealth more unequal than labor earnings.

Mathematics ties together equilibrium model outcomes: The
same forces that make cross-section wealth more unevenly dis-
tributed and fatter-tailed than cross-section earnings also make
an individual’s wealth grow at a higher rate than do her earnings.
Firms’ demand for physical capital and an equilibrium growth
rate for an individual’s savings that exceeds the growth rate
of her labor earnings (gX

t ≥ (r − ρ)/γ > g > 0) imply that the
equilibrium interest rate r exceeds the nonstochastic augmented
golden-rule interest rate rramsey = ρ+ γg .

Our paper shares tools, explicit theorizing, and some, but not
all, goals with ref. 8, but differs in focus and details of the formal
economic environments being modeled. They study effects of
technical change and automation on an equilibrium wealth distri-
bution and derive power laws like ones that we, too, find. Details
about insurance arrangements and whether earnings processes
are stationary or display growth differ between their framework
and ours. What unites our project and theirs is our common
reliance on the same mathematical tools for characterizing out-
comes in heterogeneous-agent models cast in continuous time in
closed forms.∗∗∗ .

To obtain an enlightening and interpretable explicit solution
for the wealth distribution, we have analyzed an admittedly
unrealistic model with no shocks to labor earnings. Uninsurable
shocks to labor earnings are, of course, important, so in ref. 25,
we incorporate permanent uninsurable Brownian shocks to labor
earnings. Quantitative outcomes in that model depend crucially
on earnings growth volatility and precautionary savings. That
model can be used to study how government tax and transfer
policies affect equilibrium outcomes.

Appendix
Cross-Section Earnings Distribution. The Kolmogorov Forward
equation for the density function φY (Y ) is

0 =−
(
∂(gY φY (Y ))

∂Y

)
−λφY (Y ) . [57]

The density function implied by [57] is

φY (Y ) =
λ

gY0

(
Y

Y0

)− g+λ
g

, [58]

which implies the CDF given in [11].

***Ref. 33 analyzed a continuous-time version of a model like refs. 1–4, except with
agents who have negative exponential utility generalized to incorporate a discount
function proposed in ref. 34, and a labor-earnings process that is affine like the pro-
cesses defined in ref. 35. Because agents live forever, cross-sectional wealth is less
fat-tailed than cross-sectional earnings. Ref. 36 shows that the permanent-income
hypothesis holds in the sense that optimal consumption is a martingale in equilibrium.
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Fig. 3. Lorenz curves for cross-section earnings (A) and wealth (B). We
set θ= 0.5, gB = 1.11%, λA =λB = 0.0167, ρA = ρB = 0.05, γA = γB = 2, δ=

0.06, and α= 0.36.

Cross-Section Wealth Distribution. Since the total wealth Pt = 0 at
the stochastic death moment t = τ , we can rewrite [21] as follows
for t <τ :

dPt =

(
r − ρ
γ

)
Pt−dt −Pt−dSt . [59]

Applying the Kolmogorov Forward Equation to Pt =P(Xt ,Yt),
we obtain

0 =− ∂

∂P

[(
r − ρ
γ

P

)
φP (P)

]
−λφP (P) . [60]

By solving [60], we obtain the following cross-section stationary
distribution of P :

φP (P) = ξXPξX0 P−ξX−1 , [61]

where P0 = qY0 =Y0/ (r +λ− g) and ξX is given by [26]. Eq.
61 implies the following CDF for P :

ΦP (P) = 1−
(

P

P0

)−ξX
. [62]

Next, compute the inverse of the CDF Φ(X ) for wealth X .
Rewriting [24] yields

Y (X )

Y0
= (1−ΦX (X ))−

g
λ . [63]

Substituting [63] into [22], we obtain

X =

[(
(1−ΦX (X ))−

g
λ

)r−ρ
γg − (1−ΦX (X ))−

g
λ

]
qY0

=
[
(1−ΦX (X ))

ρ−r
λγ − (1−ΦX (X ))−

g
λ

]
qY0 . [64]

Let u = ΦX (X ). Rewriting [64], we obtain X = Φ−1
X (u), where

Φ−1
X (u) =

(
(1− u)

ρ−r
λγ − (1− u)−

g
λ

)
qY0 . [65]

Integrating Φ−1
X (·) from zero to z yields∫ z

0

Φ−1
X (u)du

=

λγ
(

1− (1− z )
ρ−r+λγ

λγ

)
ρ− r +λγ

−
λ
(

1− (1− z )
λ−g
λ

)
λ− g

qY0 .

[66]
We use Eq. 66 when calculating the wealth Lorenz curve and
Gini coefficient.

Data Availability. All study data are included in the article.
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